

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1,2,2-Tetrakis(dimethylamino)ethane-1,2-diium bis(tetraphenylborate) acetone disolvate

Ioannis Tiritiris^a and Willi Kantlehner^b*

^aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and ^bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany Correspondence e-mail: willi.kantlehner@htw-aalen.de

Received 29 March 2012; accepted 5 April 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.109; data-to-parameter ratio = 7.5.

The title compound, $C_{10}H_{24}N_4^{2+}\cdot 2C_{24}H_{20}B^{-}\cdot 2C_3H_6O$, crystallizes with two acetone solvent molecules per asymmetric unit. In the dication, both amidinium units are twisted about the central C–C single bond by 63.8 (3)° and the positive charges are delocalized over both N–C–N planes.

Related literature

For the crystal structure of tetrakis(dimethylamino)ethylene (TDAE), see: Bock *et al.* (1991). For the synthesis of octamethyloxamidinium salts with different anions, see: Wiberg (1968). For the synthesis and crystal structures of (TDAE)Cl₂ and (TDAE)Br₂, see: Bock *et al.* (1989). For the synthesis and crystal structure of (TDAE)(SCF₃)₂, see: Kolomeitsev *et al.* (2000). For the crystal structure of (TDAE)(PF₆)₂, see: Elbl-Weiser *et al.* (1990). For the synthesis and crystal structure of N,N,N',N',N'',N'',N''',N'''-octamethyl-(but-2-yne) bis(amidinium) bis(tetrafluoroborate), see: Drandarov *et al.* (2012). For N,N,N',N',N'',N''',N'''-octamethyl-(but-2-yne) bis(amidinium) bis(tetraphenylborate), see: Kress *et al.* (2012).

Experimental

Crystal data

C₁₀H₂₄N₄²⁺·2C₂₄H₂₀B⁻·2C₃H₆O $M_r = 954.91$ Orthorhombic, *Pca2*₁ a = 30.0601 (9) Å b = 9.9321 (3) Å c = 18.2054 (6) Å

Data collection

Bruker Kappa APEXII DUO diffractometer 36726 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.109$ S = 1.054983 reflections 661 parameters $V = 5435.4 \text{ (3) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.24 \times 0.18 \text{ mm}$

4983 independent reflections 4058 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.054$

 $\begin{array}{l} 1 \text{ restraint} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 0.39 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -0.30 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: *APEX2*, (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97*; molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr Wolfgang Frey (Institut für Organische Chemie, Universität Stuttgart) for the measuring of the crystal data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2058).

References

- Bock, H., Borrmann, H., Havlas, Z., Oberhammer, H., Ruppert, K. & Simon, A. (1991). Angew. Chem. Int. Ed. 30, 1678–1681.
- Bock, H., Ruppert, K., Merzweiler, K., Fenske, D. & Goesmann, H. (1989). Angew. Chem. Int. Ed. 28, 1684–1685.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, D-53002 Bonn, Germany.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Drandarov, K., Tiritiris, I., Wassiljew, O., Siehl, H.-U. & Kantlehner, W. (2012). *Chem. Eur. J.* Accepted.
- Elbl-Weiser, K., Krieger, C. & Staab, H. A. (1990). Angew. Chem. Int. Ed. 29, 211–213.
- Kolomeitsev, A., Medébielle, M., Kirsch, P., Lork, E. & Röschenthaler, H. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2183–2185.
- Kress, R., Tiritiris, I. & Kantlehner, W. (2012). Unpublished results.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wiberg, N. (1968). Angew. Chem. Int. Ed. 10, 766-779.

supplementary materials

Acta Cryst. (2012). E68, o1371 [doi:10.1107/S1600536812015085]

1,1,2,2-Tetrakis(dimethylamino)ethane-1,2-diium bis(tetraphenylborate) acetone disolvate

Ioannis Tiritiris and Willi Kantlehner

Comment

By oxidizing tetrakis(dimethylamino)ethylene (TDAE) with elemental halogens in organic solvents, the octamethyloxamidinium ion (TDAE)²⁺ is formed (Wiberg, 1968). This is also associated with major structural changes. In the here studied bis(tetraphenylborate) salt (Fig. 1), the single bond between C1 and C2 is clearly characterized by a length of 1.498 (5) Å and the C–N bond lengths are equal with 1.309 (4) to 1.330 (4) Å, indicating double bond character. The bonds between the N atoms and the terminal *C*-methyl groups, all have values close to a typical single bond (1.463 (5)– 1.479 (5) Å). The sums of angles around the central C1, C2 and the N atoms are all close to 360°. As a consequence of the two-electron oxidation, the presence of four planar dimethylamino groups and a nearly perfect delocalization of each positive charge in the amidinium systems is observed. The charges are distributed in the dication between the dimethylamino groups. The planes built up from both amidinium units (N1/C1/N2 and N3/C2/N4) are twisted to each other by 63.8 (3)°. Similar arrangements have been observed in the crystal structures of (TDAE)Cl₂ (Bock *et al.*, 1989), (TDAE)Br₂ (Bock *et al.*, 1989), (TDAE)(SCF₃)₂ (Kolomeitsev *et al.*, 2000) and (TDAE)(PF₆)₂ (Elbl-Weiser *et al.*, 1990). In contrast to the previously mentioned salts, which are all colourless, the title compound is yellow coloured. The same phenomenon was observed when the colours of *N*,*N*,*N'*,*N''*,*N'''*,*N'''*-octamethyl-(but-2-yne)-bis(amidinium)- bis-(tetrafluoroborate) (Drandarov *et al.*, 2012) and -bis(tetraphenylborate) (Kress *et al.*, 2012) were compared.

Experimental

The title compound was prepared by reaction of sodium tetraphenylborate with N, N, N', N', N'', N'', N''', octamethyloxamidinium dichloride in acetonitrile at room temperature. Yellow single crystals were obtained by slow evaporation of an acetone solution at room temperature.

Refinement

The title compound crystallizes in the non-centrosymmetric space group $Pca2_1$; however, in the absence of significant anomalous scattering effects, the Flack parameter is essentially meaningless. Accordingly, Friedel pairs were merged. Hydrogen atoms bound to aromatic carbon atoms were placed in idealized positions with d(C-H) = 0.95 Å and were included in the refinement in the riding model approximation with U(H) set to $1.2 U_{eq}(C)$. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to $1.5 U_{eq}(C)$ and d(C-H) = 0.98 Å.

Computing details

Data collection: *APEX2*, (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97*;

molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

Figure 1

Molecular structure of the title compound showing 50% probability displacement ellipsoids. All H atoms were omitted for clarity.

1,1,2,2-Tetrakis(dimethylamino)ethane-1,2-diium bis(tetraphenylborate) acetone disolvate

Crystal	data
---------	------

$C_{10}H_{24}N_4^{2+}\cdot 2C_{24}H_{20}B^-\cdot 2C_3H_6O$
$M_r = 954.91$
Orthorhombic, $Pca2_1$
Hall symbol: P 2c -2ac
a = 30.0601 (9) Å
b = 9.9321(3) Å
c = 18.2054 (6) Å
V = 5435.4 (3) Å ³
Z = 4
F(000) = 2056

Data collection

Bruker Kappa APEXII DUO diffractometer Radiation source: sealed tube Graphite monochromator φ scans, and ω scans 36726 measured reflections 4983 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.109$ S = 1.05 $D_x = 1.167 \text{ Mg m}^{-3}$ Melting point: 483 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9611 reflections $\theta = 1.4-25.1^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.30 \times 0.24 \times 0.18 \text{ mm}$

4058 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 1.4^{\circ}$ $h = -35 \rightarrow 34$ $k = -11 \rightarrow 11$ $l = -21 \rightarrow 21$

4983 reflections661 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0601P)^2 + 0.9312P]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: difference Fourier map	$(\Delta/\sigma)_{\rm max} < 0.001$
H-atom parameters constrained	$\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.12707 (10)	0.7168 (4)	0.37772 (19)	0.0200 (8)	
C2	0.13799 (11)	0.7692 (3)	0.3027 (2)	0.0220 (8)	
N1	0.14503 (9)	0.6019 (3)	0.39743 (16)	0.0233 (7)	
C3	0.16208 (12)	0.5055 (4)	0.3436 (2)	0.0338 (9)	
H3A	0.1542	0.5355	0.2940	0.051*	
H3B	0.1489	0.4168	0.3528	0.051*	
H3C	0.1945	0.4995	0.3480	0.051*	
C4	0.15054 (12)	0.5609 (4)	0.4744 (2)	0.0320 (9)	
H4A	0.1484	0.6403	0.5062	0.048*	
H4B	0.1797	0.5187	0.4809	0.048*	
H4C	0.1272	0.4965	0.4876	0.048*	
N2	0.10013 (9)	0.7912 (3)	0.41826 (16)	0.0228 (7)	
C5	0.09189 (12)	0.9346 (4)	0.4024 (2)	0.0282 (9)	
H5A	0.1146	0.9679	0.3682	0.042*	
H5B	0.0933	0.9864	0.4482	0.042*	
H5C	0.0624	0.9449	0.3802	0.042*	
C6	0.07184 (12)	0.7379 (4)	0.4777 (2)	0.0312 (9)	
H6A	0.0702	0.6396	0.4737	0.047*	
H6B	0.0419	0.7761	0.4734	0.047*	
H6C	0.0846	0.7625	0.5253	0.047*	
N3	0.10484 (9)	0.7788 (3)	0.25641 (16)	0.0232 (7)	
C7	0.10512 (12)	0.8684 (4)	0.1915 (2)	0.0344 (9)	
H7A	0.1288	0.9354	0.1969	0.052*	
H7B	0.0764	0.9143	0.1875	0.052*	
H7C	0.1104	0.8149	0.1471	0.052*	
C8	0.06283 (11)	0.7054 (4)	0.2677 (2)	0.0281 (9)	
H8A	0.0675	0.6329	0.3034	0.042*	
H8B	0.0529	0.6668	0.2209	0.042*	
H8C	0.0401	0.7675	0.2863	0.042*	
N4	0.18007 (9)	0.8008 (3)	0.28813 (16)	0.0232 (7)	
C9	0.21206 (11)	0.8266 (4)	0.3481 (2)	0.0272 (8)	
H9A	0.1958	0.8462	0.3935	0.041*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9B	0.2308	0.9039	0.3353	0.041*
H9C	0.2308	0.7470	0.3554	0.041*
C10	0.19960 (12)	0.7968 (4)	0.2144 (2)	0.0322 (9)
H10A	0.1805	0.7436	0.1819	0.048*
H10B	0.2292	0.7556	0.2168	0.048*
H10C	0.2022	0.8887	0.1952	0.048*
B1	0.24717 (12)	0.1824 (4)	0.4752 (2)	0.0188 (8)
C11	0.23805 (10)	0.1708 (3)	0.38587 (19)	0.0181 (7)
C12	0.19512 (11)	0.1679 (3)	0.35475 (19)	0.0223 (8)
H12A	0.1701	0.1690	0.3865	0.027*
C13	0.18807 (12)	0.1636 (4)	0.2796 (2)	0.0265 (8)
H13A	0.1585	0.1630	0.2610	0.032*
C14	0.22340 (13)	0.1601 (4)	0.2316 (2)	0.0311 (9)
H14A	0.2186	0.1557	0.1801	0.037*
C15	0.26608 (13)	0.1631 (4)	0.2598 (2)	0.0323 (9)
H15A	0.2909	0.1616	0.2275	0.039*
C16	0.27273 (11)	0.1682 (4)	0.3351 (2)	0.0255 (8)
H16A	0.3024	0.1701	0.3529	0.031*
C17	0.29451 (10)	0.1072 (3)	0.49522 (19)	0.0189 (7)
C18	0.30372 (11)	-0.0243 (4)	0.4717 (2)	0.0243 (8)
H18A	0.2818	-0.0705	0.4438	0.029*
C19	0.34317 (11)	-0.0900(4)	0.4872 (2)	0.0287 (9)
H19A	0.3477	-0.1796	0.4705	0.034*
C20	0.37621 (11)	-0.0253(4)	0.5272(2)	0.0287(9)
H20A	0.4036	-0.0690	0.5373	0.034*
C21	0.36841 (11)	0.1035 (4)	0.5519 (2)	0.0278 (9)
H21A	0.3905	0.1487	0.5799	0.033*
C22	0.32844(11)	0.1680 (4)	0.53598(19)	0.0227 (8)
H22A	0.3240	0.2570	0.5536	0.027*
C23	0.25020 (10)	0.3409 (3)	0.50010 (19)	0.0188(7)
C24	0.26607 (10)	0.4427 (3)	0.45320 (19)	0.0201 (8)
H24A	0.2737	0.4204	0.4040	0.024*
C25	0.27097 (11)	0.5748 (4)	0.4767(2)	0.0281 (9)
H25A	0.2817	0.6410	0.4434	0.034*
C26	0.26053(11)	0.6112 (4)	0.5475(2)	0.0272 (9)
H26A	0.2641	0.7018	0.5631	0.033*
C27	0.24495 (11)	0.5157 (3)	0.5953(2)	0.0230 (8)
H27A	0.2374	0.5398	0.6443	0.028*
C28	0.24023 (10)	0.3832 (3)	0.57183 (19)	0.0196 (8)
H28A	0.2298	0.3182	0.6060	0.024*
C29	0.20597 (11)	0.1089 (3)	0.52084 (18)	0.0190 (8)
C30	0.16441 (11)	0.1728 (4)	0.52823(19)	0.0210 (8)
H30A	0.1605	0.2590	0.5065	0.025*
C31	0.12900 (11)	0.1158 (4)	0.56579 (19)	0.0256 (8)
H31A	0.1017	0.1634	0.5698	0.031*
C32	0.13319 (12)	-0.0089(4)	0.5972 (2)	0.0315 (9)
H32A	0.1089	-0.0492	0.6224	0.038*
C33	0.17346 (13)	-0.0747(4)	0.5914 (2)	0.0357 (10)
H33A	0.1770	-0.1607	0.6134	0.043*

C34	0.20880 (12)	-0.0171 (4)	0.5539 (2)	0.0271 (8)
H34A	0.2360	-0.0655	0.5507	0.033*
B2	0.00931 (12)	0.3446 (4)	0.2005 (2)	0.0188 (8)
C35	0.04912 (11)	0.4242 (4)	0.15515 (18)	0.0194 (7)
C36	0.09428 (10)	0.4095 (3)	0.17347 (19)	0.0217 (8)
H36A	0.1021	0.3535	0.2137	0.026*
C37	0.12799 (12)	0.4743 (4)	0.1345 (2)	0.0283 (9)
H37A	0.1581	0.4609	0.1484	0.034*
C38	0.11829 (12)	0.5568 (4)	0.0767 (2)	0.0332 (10)
H38A	0.1414	0.6017	0.0509	0.040*
C39	0.07416 (13)	0.5741 (5)	0.0562 (2)	0.0363 (10)
H39A	0.0668	0.6310	0.0161	0.044*
C40	0.04072 (11)	0.5075 (4)	0.0948 (2)	0.0264 (8)
H40A	0.0108	0.5193	0.0793	0.032*
C41	-0.03901 (10)	0.4195 (3)	0.18651 (18)	0.0189 (7)
C42	-0.04449 (11)	0.5592 (4)	0.19129 (19)	0.0231 (8)
H42A	-0.0191	0.6126	0.2020	0.028*
C43	-0.08479 (11)	0.6238 (4)	0.18133 (19)	0.0252 (8)
H43A	-0.0865	0.7188	0.1867	0.030*
C44	-0.12205 (12)	0.5531 (4)	0.1640 (2)	0.0336 (10)
H44A	-0.1499	0.5971	0.1580	0.040*
C45	-0.11844 (12)	0.4168 (4)	0.1554 (2)	0.0363 (10)
H45A	-0.1437	0.3661	0.1409	0.044*
C46	-0.07803(11)	0.3514 (4)	0.1677 (2)	0.0285 (9)
H46A	-0.0770	0.2561	0.1630	0.034*
C47	0.00597(10)	0 1890 (4)	0 17045 (19)	0.0205 (8)
C48	-0.00876(11)	0.0813(4)	0.2141(2)	0.0200(8)
H48A	-0.0142	0.0971	0.2648	0.029*
C49	-0.01574(11)	-0.0472(4)	0.1867(2)	0.029 0.0285 (9)
H49A	-0.0259	-0.1164	0.2185	0.034*
C50	-0.00809(11)	-0.0752(4)	0.2109 0.1140(2)	0.0271(9)
H50A	-0.0128	-0.1633	0.0953	0.0271 ())
C51	0.00657 (11)	0.0272(4)	0.0995	0.032
H51A	0.0118	0.0272 (4)	0.0176	0.0274(5)
C52	0.0113	0.0099 0.1557 (4)	0.0170	0.033
U52	0.01333 (11)	0.1337(4)	0.0907 (2)	0.0235 (8)
C53	0.0239	0.2242 0.3463 (3)	0.00+3 0.28040 (10)	0.028
C54	0.02121(10)	0.3403(3) 0.4237(4)	0.20940(19) 0.22028(10)	0.0187(7)
U54A	-0.0218	0.4337 (4)	0.33938 (19)	0.0209(7)
ПЈ4А С55	-0.0218	0.4919 0.4205 (4)	0.3220 0.41225 (10)	0.025°
1155 A	0.01234 (11)	0.4393 (4)	0.41525 (19)	0.0202 (8)
ПЈЈА C5(-0.0025	0.3007	0.4430	0.031
	0.04321(12)	0.3373 (4)	0.4403 (2)	0.0279(9)
П30А С57	0.0333	0.3017	0.4900	0.033°
	0.00387 (11)	0.2081 (4)	0.3933 (2)	0.0207 (9)
ПЭ/А С59	0.05272(11)	0.2104	0.4113	0.032*
	0.05373(11)	0.2622 (4)	0.5205 (2)	0.0239 (8)
пэъА	0.0080	0.1982	0.2890	0.029*
	0.29178 (12)	0.6328 (4)	0.2820 (2)	0.0693 (11)
059	0.32840 (16)	0.6770 (6)	0.3005 (3)	0.0565 (14)

C60	0.36004 (18)	0.5888 (8)	0.3382 (3)	0.086 (2)
H60A	0.3681	0.6285	0.3857	0.129*
H60B	0.3868	0.5784	0.3080	0.129*
H60C	0.3464	0.5004	0.3462	0.129*
C61	0.3405 (2)	0.8204 (6)	0.2871 (3)	0.0740 (17)
H61A	0.3174	0.8631	0.2570	0.111*
H61B	0.3690	0.8246	0.2613	0.111*
H61C	0.3429	0.8678	0.3341	0.111*
O2	0.47849 (12)	0.1730 (5)	0.3833 (2)	0.0902 (15)
C62	0.43772 (18)	0.1911 (7)	0.3802 (3)	0.0662 (17)
C63	0.40778 (16)	0.0963 (7)	0.3460 (3)	0.0734 (17)
H63A	0.3938	0.1382	0.3030	0.110*
H63B	0.3847	0.0699	0.3812	0.110*
H63C	0.4245	0.0164	0.3305	0.110*
C64	0.4158 (2)	0.3130 (7)	0.4088 (4)	0.095 (2)
H64A	0.4359	0.3594	0.4428	0.142*
H64B	0.3885	0.2875	0.4348	0.142*
H64C	0.4083	0.3731	0.3679	0.142*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U ²³
C1	0.0152 (16)	0.0201 (19)	0.0246 (19)	0.0010 (14)	-0.0072 (14)	-0.0050 (16)
C2	0.0197 (18)	0.0111 (18)	0.035 (2)	0.0040 (14)	-0.0055 (16)	-0.0089 (16)
N1	0.0204 (14)	0.0149 (16)	0.0347 (17)	0.0001 (12)	-0.0083 (13)	-0.0015 (13)
C3	0.030(2)	0.016 (2)	0.055 (3)	0.0080 (16)	-0.0070 (19)	-0.0104 (19)
C4	0.027 (2)	0.026 (2)	0.043 (2)	-0.0009 (16)	-0.0094 (17)	0.0097 (19)
N2	0.0216 (15)	0.0168 (16)	0.0300 (16)	0.0025 (13)	-0.0047 (13)	-0.0031 (13)
C5	0.035 (2)	0.019 (2)	0.031 (2)	0.0076 (16)	-0.0051 (16)	-0.0051 (17)
C6	0.0277 (19)	0.031 (2)	0.035 (2)	0.0048 (16)	0.0025 (17)	0.0003 (19)
N3	0.0193 (14)	0.0223 (16)	0.0282 (16)	-0.0001 (12)	-0.0036 (13)	-0.0049 (14)
C7	0.032 (2)	0.042 (3)	0.029 (2)	0.0001 (18)	-0.0065 (17)	0.0055 (19)
C8	0.0207 (18)	0.028 (2)	0.035 (2)	-0.0031 (16)	-0.0084 (16)	-0.0093 (18)
N4	0.0199 (15)	0.0192 (17)	0.0306 (16)	0.0010 (12)	-0.0024 (13)	-0.0073 (13)
C9	0.0206 (18)	0.022 (2)	0.039 (2)	-0.0028 (15)	-0.0083 (16)	-0.0030 (17)
C10	0.027 (2)	0.034 (2)	0.035 (2)	0.0010 (17)	0.0041 (17)	-0.0056 (19)
B1	0.0169 (18)	0.015 (2)	0.025 (2)	-0.0009 (15)	-0.0046 (16)	0.0021 (17)
C11	0.0207 (17)	0.0089 (17)	0.0248 (18)	-0.0004 (13)	-0.0012 (15)	-0.0002 (14)
C12	0.0196 (17)	0.0193 (19)	0.028 (2)	-0.0002 (14)	-0.0004 (15)	-0.0022 (16)
C13	0.0265 (19)	0.020 (2)	0.033 (2)	0.0016 (16)	-0.0108 (16)	-0.0010 (17)
C14	0.038 (2)	0.033 (2)	0.022 (2)	-0.0005 (18)	-0.0036 (17)	0.0027 (18)
C15	0.030 (2)	0.037 (2)	0.029 (2)	-0.0027 (17)	0.0039 (17)	0.0041 (19)
C16	0.0194 (18)	0.029 (2)	0.028 (2)	-0.0006 (15)	0.0003 (15)	0.0033 (17)
C17	0.0150 (16)	0.0188 (19)	0.0228 (18)	-0.0033 (14)	0.0021 (14)	0.0038 (15)
C18	0.0214 (18)	0.023 (2)	0.029 (2)	0.0013 (15)	-0.0052 (15)	0.0000 (16)
C19	0.0245 (19)	0.023 (2)	0.039 (2)	0.0040 (16)	-0.0009 (17)	0.0036 (18)
C20	0.022 (2)	0.030 (2)	0.034 (2)	0.0072 (16)	-0.0030 (16)	0.0051 (18)
C21	0.0188 (18)	0.033 (2)	0.031 (2)	-0.0051 (16)	-0.0072 (16)	0.0042 (18)
C22	0.0207 (18)	0.022 (2)	0.0257 (19)	-0.0035 (15)	-0.0010 (15)	-0.0006 (16)
C23	0.0118 (15)	0.0173 (18)	0.0272 (18)	0.0028 (14)	-0.0069 (14)	0.0038 (16)

C24	0.0147 (16)	0.0180 (19)	0.028 (2)	-0.0034 (14)	-0.0068 (13)	0.0028 (16)
C25	0.0209 (18)	0.021 (2)	0.042 (2)	-0.0023 (15)	-0.0081 (16)	0.0098 (18)
C26	0.0218 (18)	0.0142 (18)	0.046 (3)	-0.0010 (14)	-0.0131 (17)	-0.0070 (18)
C27	0.0212 (18)	0.0185 (19)	0.0293 (19)	0.0016 (15)	-0.0065 (15)	-0.0038 (16)
C28	0.0117 (16)	0.0196 (19)	0.0277 (19)	-0.0009 (13)	-0.0026 (14)	0.0016 (16)
C29	0.0208 (18)	0.0161 (19)	0.0202 (18)	-0.0021 (14)	-0.0028 (14)	-0.0038 (15)
C30	0.0229 (19)	0.0172 (19)	0.0229 (18)	-0.0027 (15)	-0.0007 (14)	-0.0014 (15)
C31	0.0224 (18)	0.028 (2)	0.0259 (19)	-0.0045 (16)	0.0031 (15)	-0.0077 (17)
C32	0.028 (2)	0.031 (2)	0.036 (2)	-0.0136 (17)	0.0097 (17)	-0.0019 (19)
C33	0.046 (2)	0.021 (2)	0.040 (2)	-0.0070 (18)	0.0094 (19)	0.0089 (19)
C34	0.029 (2)	0.021 (2)	0.031 (2)	-0.0016 (16)	0.0005 (16)	-0.0029 (17)
B2	0.0157 (18)	0.020(2)	0.021 (2)	-0.0021 (16)	0.0029 (15)	-0.0019 (17)
C35	0.0190 (17)	0.0212 (19)	0.0180 (17)	-0.0014 (15)	0.0011 (13)	-0.0094 (15)
C36	0.0212 (17)	0.0169 (19)	0.027 (2)	0.0006 (14)	0.0012 (15)	-0.0050 (15)
C37	0.0192 (19)	0.026 (2)	0.040 (2)	-0.0065 (16)	0.0032 (16)	-0.0138 (18)
C38	0.029 (2)	0.042 (2)	0.028 (2)	-0.0171 (18)	0.0109 (17)	-0.0096 (19)
C39	0.040 (2)	0.047 (3)	0.022 (2)	-0.0151 (19)	-0.0016 (17)	0.0033 (19)
C40	0.0188 (18)	0.038 (2)	0.0225 (18)	-0.0091 (16)	-0.0015 (15)	-0.0025 (17)
C41	0.0207 (17)	0.0210 (19)	0.0150 (16)	-0.0036 (14)	0.0010 (13)	-0.0012 (15)
C42	0.0203 (18)	0.023 (2)	0.0265 (19)	-0.0036 (15)	-0.0049 (15)	0.0061 (16)
C43	0.0261 (19)	0.024 (2)	0.0257 (19)	0.0008 (15)	-0.0039 (16)	-0.0013 (16)
C44	0.0225 (19)	0.032 (2)	0.046 (2)	0.0067 (17)	-0.0054 (17)	-0.015 (2)
C45	0.0199 (19)	0.035 (3)	0.054 (3)	-0.0042 (17)	-0.0044 (18)	-0.010 (2)
C46	0.0205 (18)	0.021 (2)	0.044 (2)	-0.0026 (15)	0.0015 (16)	-0.0107 (18)
C47	0.0119 (15)	0.025 (2)	0.024 (2)	-0.0004 (14)	-0.0023 (14)	-0.0018 (16)
C48	0.0212 (18)	0.022 (2)	0.029 (2)	-0.0005 (15)	-0.0018 (16)	-0.0002 (17)
C49	0.0270 (19)	0.019 (2)	0.039 (2)	-0.0025 (15)	-0.0063 (17)	0.0016 (18)
C50	0.0185 (17)	0.017 (2)	0.045 (2)	0.0021 (15)	-0.0103 (16)	-0.0091 (18)
C51	0.0159 (18)	0.029 (2)	0.038 (2)	0.0014 (15)	-0.0042 (16)	-0.0105 (19)
C52	0.0161 (17)	0.024 (2)	0.030 (2)	-0.0013 (14)	0.0001 (15)	-0.0029 (17)
C53	0.0160 (16)	0.0173 (18)	0.0229 (18)	-0.0059 (14)	-0.0033 (14)	-0.0005 (15)
C54	0.0182 (17)	0.0240 (19)	0.0204 (17)	-0.0016 (14)	0.0008 (14)	0.0010 (16)
C55	0.0270 (19)	0.030(2)	0.0218 (19)	0.0001 (16)	0.0038 (15)	-0.0010 (17)
C56	0.033 (2)	0.032 (2)	0.0187 (18)	-0.0072 (17)	-0.0076 (16)	0.0045 (17)
C57	0.0240 (19)	0.026 (2)	0.030 (2)	-0.0032 (16)	-0.0096 (16)	0.0062 (18)
C58	0.0220 (18)	0.0193 (19)	0.031 (2)	-0.0014 (15)	-0.0002 (15)	0.0001 (16)
O1	0.051 (2)	0.088 (3)	0.069 (2)	0.011 (2)	0.0060 (18)	-0.008 (2)
C59	0.043 (3)	0.081 (4)	0.046 (3)	0.010 (3)	0.003 (2)	-0.003 (3)
C60	0.067 (4)	0.141 (6)	0.050 (3)	0.032 (4)	0.008 (3)	0.015 (4)
C61	0.082 (4)	0.082 (4)	0.059 (3)	-0.010 (3)	0.008 (3)	-0.022 (3)
O2	0.046 (2)	0.165 (5)	0.060 (2)	-0.028 (2)	-0.0040 (19)	0.018 (3)
C62	0.053 (3)	0.109 (5)	0.037 (3)	-0.025 (3)	0.012 (2)	0.011 (3)
C63	0.047 (3)	0.112 (5)	0.061 (3)	-0.023 (3)	0.018 (3)	-0.006 (4)
C64	0.073 (4)	0.105 (6)	0.106 (6)	-0.026 (4)	0.031 (4)	0.000 (5)

Geometric parameters (Å, °)

C1—N1	1.313 (4)	C30—C31	1.386 (5)
C1—N2	1.321 (4)	C30—H30A	0.9500
C1—C2	1.498 (5)	C31—C32	1.370 (5)

C2—N3	1.309 (4)	C31—H31A	0.9500
C2—N4	1.330 (4)	C32—C33	1.380 (6)
N1—C3	1.463 (5)	C32—H32A	0.9500
N1—C4	1.469 (5)	C33—C34	1.386 (5)
С3—НЗА	0.9800	С33—Н33А	0.9500
С3—Н3В	0.9800	C34—H34A	0.9500
С3—НЗС	0.9800	B2—C47	1.642 (5)
C4—H4A	0.9800	B2—C41	1.652 (5)
C4—H4B	0.9800	B2—C35	1.655 (5)
C4—H4C	0.9800	B2—C53	1.658 (5)
N2—C6	1.474 (5)	C35—C40	1.399 (5)
N2—C5	1.475 (5)	C35—C36	1.405 (5)
С5—Н5А	0.9800	C36—C37	1.394 (5)
С5—Н5В	0.9800	С36—Н36А	0.9500
С5—Н5С	0.9800	C37—C38	1.365 (6)
С6—Н6А	0.9800	С37—Н37А	0.9500
С6—Н6В	0.9800	C38—C39	1.389 (5)
С6—Н6С	0.9800	C38—H38A	0.9500
N3—C8	1.473 (4)	C39—C40	1.393 (5)
N3—C7	1.479 (5)	С39—Н39А	0.9500
С7—Н7А	0.9800	C40—H40A	0.9500
С7—Н7В	0.9800	C41—C46	1.397 (5)
С7—Н7С	0.9800	C41—C42	1.400 (5)
C8—H8A	0.9800	C42—C43	1.383 (5)
C8—H8B	0.9800	C42—H42A	0.9500
C8—H8C	0.9800	C43—C44	1.360 (5)
N4—C10	1.465 (5)	C43—H43A	0.9500
N4—C9	1.478 (4)	C44—C45	1.366 (5)
С9—Н9А	0.9800	C44—H44A	0.9500
С9—Н9В	0.9800	C45—C46	1.396 (5)
С9—Н9С	0.9800	C45—H45A	0.9500
C10—H10A	0.9800	C46—H46A	0.9500
C10—H10B	0.9800	C47—C52	1.401 (5)
C10—H10C	0.9800	C47—C48	1.405 (5)
B1—C23	1.641 (5)	C48—C49	1.386 (5)
B1—C17	1.648 (5)	C48—H48A	0.9500
B1—C11	1.654 (5)	C49—C50	1.372 (6)
B1—C29	1.660 (5)	C49—H49A	0.9500
C11—C16	1.394 (5)	C50—C51	1.387 (5)
C11—C12	1.410 (5)	C50—H50A	0.9500
C12—C13	1.385 (5)	C51—C52	1.394 (5)
C12—H12A	0.9500	C51—H51A	0.9500
C13—C14	1.376 (5)	C52—H52A	0.9500
C13—H13A	0.9500	C53—C54	1.397 (5)
C14—C15	1.382 (5)	C53—C58	1.404 (5)
C14—H14A	0.9500	C54—C55	1.390 (5)
C15—C16	1.385 (5)	С54—Н54А	0.9500
C15—H15A	0.9500	C55—C56	1.370 (5)
C16—H16A	0.9500	С55—Н55А	0.9500

C17—C22	1.398 (5)	C56—C57	1.381 (5)
C17—C18	1.402 (5)	C56—H56A	0.9500
C18—C19	1.383 (5)	C57—C58	1.379 (5)
C18—H18A	0.9500	С57—Н57А	0.9500
C19—C20	1.389 (5)	C58—H58A	0.9500
C19—H19A	0.9500	O1—C59	1.232 (6)
C20—C21	1.375 (5)	C59—C60	1.464 (7)
C20—H20A	0.9500	C59—C61	1.490 (8)
C21—C22	1.392 (5)	C60—H60A	0.9800
C21—H21A	0.9500	C60—H60B	0.9800
C22—H22A	0.9500	C60—H60C	0.9800
C23—C28	1.404 (5)	C61—H61A	0.9800
C23—C24	1.407 (5)	C61—H61B	0.9800
C24—C25	1.388 (5)	C61—H61C	0.9800
C24—H24A	0.9500	O2—C62	1.240 (6)
C25—C26	1.374 (6)	C62—C63	1.444 (8)
С25—Н25А	0.9500	C62—C64	1.474 (8)
C26—C27	1.371 (5)	С63—Н63А	0.9800
C26—H26A	0.9500	С63—Н63В	0.9800
C27—C28	1.391 (5)	С63—Н63С	0.9800
С27—Н27А	0.9500	C64—H64A	0.9800
C28—H28A	0.9500	C64—H64B	0.9800
C29—C34	1.391 (5)	C64—H64C	0.9800
C29—C30	1.408 (5)		
N1—C1—N2	125.8 (3)	C34—C29—C30	114.7 (3)
N1—C1—C2	117.5 (3)	C34—C29—B1	124.5 (3)
N2—C1—C2	116.7 (3)	C30—C29—B1	120.7 (3)
N3—C2—N4	125.3 (3)	C31—C30—C29	123.0 (3)
N3—C2—C1	116.5 (3)	C31—C30—H30A	118.5
N4—C2—C1	118.2 (3)	C29—C30—H30A	118.5
C1—N1—C3	122.0 (3)	C32—C31—C30	120.3 (3)
C1—N1—C4	123.2 (3)	C32—C31—H31A	119.8
C3—N1—C4	114.7 (3)	C30—C31—H31A	119.8
N1—C3—H3A	109.5	C31—C32—C33	118.5 (3)
N1—C3—H3B	109.5	C31—C32—H32A	120.8
НЗА—СЗ—НЗВ	109.5	C33—C32—H32A	120.8
N1—C3—H3C	109.5	C32—C33—C34	121.0 (4)
НЗА—СЗ—НЗС	109.5	С32—С33—Н33А	119.5
НЗВ—СЗ—НЗС	109.5	С34—С33—Н33А	119.5
N1—C4—H4A	109.5	C33—C34—C29	122.5 (3)
N1—C4—H4B	109.5	C33—C34—H34A	118.7
H4A—C4—H4B	109.5	C29—C34—H34A	118.7
N1—C4—H4C	109.5	C47—B2—C41	108.6 (3)
H4A—C4—H4C	109.5	C47—B2—C35	109.1 (3)
H4B—C4—H4C	109.5	C41—B2—C35	110.1 (3)
C1—N2—C6	124.2 (3)	C47—B2—C53	110.4 (3)
C1—N2—C5	122.2 (3)	C41—B2—C53	109.6 (3)
C6—N2—C5	113.2 (3)	C35—B2—C53	109.0 (3)

N2—C5—H5A	109.5	C40—C35—C36	115.0 (3)
N2—C5—H5B	109.5	C40-C35-B2	123.0(3)
H5A—C5—H5B	109.5	C36—C35—B2	122.0 (3)
N2—C5—H5C	109.5	C37—C36—C35	122.2 (3)
H5A—C5—H5C	109.5	С37—С36—Н36А	118.9
H5B—C5—H5C	109.5	С35—С36—Н36А	118.9
N2—C6—H6A	109.5	C38—C37—C36	120.9 (3)
N2—C6—H6B	109.5	С38—С37—Н37А	119.5
H6A—C6—H6B	109.5	С36—С37—Н37А	119.5
N2—C6—H6C	109.5	C37—C38—C39	119.0 (3)
H6A—C6—H6C	109.5	C37—C38—H38A	120.5
H6B—C6—H6C	109.5	C39—C38—H38A	120.5
C2—N3—C8	121.8 (3)	C_{38} C_{39} C_{40}	119.7 (4)
C2—N3—C7	123.6 (3)	C38—C39—H39A	120.2
C8—N3—C7	114.5 (3)	C40—C39—H39A	120.2
N3—C7—H7A	109 5	C_{39} C_{40} C_{35}	123.1(3)
N3—C7—H7B	109.5	C_{39} C_{40} H_{40A}	118.4
H7A - C7 - H7B	109.5	C_{35} C_{40} H_{40A}	118.4
$N_3 - C_7 - H_7C$	109.5	C46-C41-C42	113.4 (3)
H7A - C7 - H7C	109.5	C46-C41-B2	113.4(3) 123.9(3)
H7B-C7-H7C	109.5	C42 - C41 - B2	123.7(3) 122.7(3)
N3 C8 H84	109.5	C42 C41 B2	122.7(3) 123.7(3)
N3_C8_H8B	109.5	C43 - C42 - C41	123.7 (3)
	109.5	$C_{43} = C_{42} = H_{42A}$	118.1
N3_C8_H8C	109.5	C44 - C43 - C42	120.8(4)
	109.5	$C44 - C43 - H43\Delta$	119.6
	109.5	C42 - C43 - H43A	119.6
$C_2 = N_1 = C_1 O_2$	109.5	C_{42} C_{43} C_{44} C_{45}	119.0 118.2 (4)
$C_2 - N_4 - C_9$	123.9(3) 120.8(3)	C43 - C44 - H444	120.9
$C_2 = N_4 = C_9$	120.8(3) 114.9(3)	$C_{45} = C_{44} = H_{44A}$	120.9
NA = CO + OA	100 5	C_{43} C_{43} C_{45} C_{46}	120.9 120.8 (4)
N4 C9 H9B	109.5	C44 = C45 = H45A	120.8 (4)
$H_{0A} = C_{0} = H_{0B}$	109.5	$C_{44} = C_{45} = \Pi_{45} \Lambda$	119.6
	109.5	$C_{40} = C_{45} = 1143 \text{ A}$	119.0 123.0(3)
	109.5	$C_{45} = C_{46} = C_{41}$	123.0 (3)
HOR CO HOC	109.5	C_{43} C_{46} H_{46A}	118.5
$M = C_1 + 10A$	109.5	C_{1} C_{10} $C_$	110.5 114.4(3)
N4 = C10 = H10R	109.5	$C_{52} = C_{47} = C_{48}$	114.4(3) 122 1(3)
	109.5	$C_{32} - C_{47} - B_{2}$	122.1(3) 122.2(3)
M = C10 = H10C	109.5	$C_{48} = C_{47} = B_2$	123.2(3) 123.0(3)
$H_{10A} = C_{10} = H_{10C}$	109.5	$C_{49} = C_{48} = C_{47}$	123.0 (3)
H10R C10 H10C	109.5	C47 C48 H48A	118.5
C_{23} B1 C_{17}	109.5 109.0(3)	$C_{47} - C_{48} - C_{48}$	110.5 120.6 (4)
C_{23} B_{1} C_{11}	109.0(3) 110.3(3)	C_{50} C_{49} H_{49A}	119.7
C17 = B1 = C11	109.2 (3)	C48 - C49 - H49A	119.7
C^{23} _B1_C^{29}	109.2 (3)	C49 - C50 - C51	119.7
C17 - B1 - C29	109.5 (3)	C49—C50—H50A	120.5
C11 - B1 - C29	109.7 (3)	C51—C50—H50A	120.5
C16-C11-C12	1147(3)	C50-C51-C52	1196(4)
0.0 0.1 0. <u>0</u>	(2)		

C16—C11—B1	122.0 (3)	С50—С51—Н51А	120.2
C12—C11—B1	123.3 (3)	С52—С51—Н51А	120.2
C13—C12—C11	122.5 (3)	C51—C52—C47	123.3 (4)
C13—C12—H12A	118.7	С51—С52—Н52А	118.3
C11—C12—H12A	118.7	С47—С52—Н52А	118.3
C14—C13—C12	120.7 (3)	C54—C53—C58	114.3 (3)
C14—C13—H13A	119.7	C54—C53—B2	123.3 (3)
C12—C13—H13A	119.7	C58—C53—B2	122.4 (3)
C13—C14—C15	118.7 (3)	C55—C54—C53	123.2 (3)
C13—C14—H14A	120.7	С55—С54—Н54А	118.4
C15—C14—H14A	120.7	С53—С54—Н54А	118.4
C14—C15—C16	120.2 (3)	C56—C55—C54	120.3 (3)
C14—C15—H15A	119.9	С56—С55—Н55А	119.9
C16—C15—H15A	119.9	С54—С55—Н55А	119.9
C15—C16—C11	123.3 (3)	C55—C56—C57	118.7 (3)
C15—C16—H16A	118.4	С55—С56—Н56А	120.7
C11—C16—H16A	118.4	С57—С56—Н56А	120.7
C22—C17—C18	114.8 (3)	C58—C57—C56	120.5 (3)
C22—C17—B1	123.5 (3)	С58—С57—Н57А	119.8
C18—C17—B1	121.7 (3)	С56—С57—Н57А	119.8
C19—C18—C17	123.1 (3)	C57—C58—C53	123.0 (3)
C19—C18—H18A	118.4	С57—С58—Н58А	118.5
C17—C18—H18A	118.4	С53—С58—Н58А	118.5
C18—C19—C20	120.1 (4)	O1—C59—C60	119.7 (6)
C18—C19—H19A	119.9	O1—C59—C61	120.8 (5)
С20—С19—Н19А	119.9	C60—C59—C61	119.4 (5)
C21—C20—C19	118.6 (3)	С59—С60—Н60А	109.5
C21—C20—H20A	120.7	С59—С60—Н60В	109.5
С19—С20—Н20А	120.7	H60A—C60—H60B	109.5
C20—C21—C22	120.5 (3)	С59—С60—Н60С	109.5
C20—C21—H21A	119.8	H60A—C60—H60C	109.5
C22—C21—H21A	119.8	H60B—C60—H60C	109.5
C21—C22—C17	122.8 (3)	С59—С61—Н61А	109.5
C21—C22—H22A	118.6	С59—С61—Н61В	109.5
C17—C22—H22A	118.6	H61A—C61—H61B	109.5
C28—C23—C24	114.9 (3)	С59—С61—Н61С	109.5
C28—C23—B1	122.1 (3)	H61A—C61—H61C	109.5
C24—C23—B1	122.8 (3)	H61B—C61—H61C	109.5
C25—C24—C23	121.9 (3)	O2—C62—C63	122.8 (6)
C25—C24—H24A	119.0	O2—C62—C64	123.0 (6)
C23—C24—H24A	119.0	C63—C62—C64	114.2 (5)
C26—C25—C24	120.9 (3)	С62—С63—Н63А	109.5
С26—С25—Н25А	119.6	С62—С63—Н63В	109.5
C24—C25—H25A	119.6	H63A—C63—H63B	109.5
C27—C26—C25	119.5 (3)	С62—С63—Н63С	109.5
C27—C26—H26A	120.3	H63A—C63—H63C	109.5
C25—C26—H26A	120.3	H63B—C63—H63C	109.5
C26—C27—C28	119.6 (3)	C62—C64—H64A	109.5
С26—С27—Н27А	120.2	С62—С64—Н64В	109.5

C28—C27—H27A	120.2	H64A—C64—H64B	109.5
C27—C28—C23	123.2 (3)	С62—С64—Н64С	109.5
C27—C28—H28A	118.4	H64A—C64—H64C	109.5
C23—C28—H28A	118.4	H64B—C64—H64C	109.5
N1—C1—C2—N3	115.9 (3)	C17—B1—C29—C30	164.0 (3)
N2-C1-C2-N3	-64.2 (4)	C11—B1—C29—C30	-76.1 (4)
N1-C1-C2-N4	-63.4 (4)	C34—C29—C30—C31	0.3 (5)
N2-C1-C2-N4	116.4 (3)	B1-C29-C30-C31	-179.9 (3)
N2-C1-N1-C3	159.6 (3)	C29—C30—C31—C32	-0.7 (5)
C2-C1-N1-C3	-20.5 (4)	C30—C31—C32—C33	0.9 (5)
N2-C1-N1-C4	-21.7 (5)	C31—C32—C33—C34	-0.8 (6)
C2-C1-N1-C4	158.1 (3)	C32—C33—C34—C29	0.4 (6)
N1—C1—N2—C6	-25.5 (5)	C30—C29—C34—C33	-0.2 (5)
C2-C1-N2-C6	154.6 (3)	B1—C29—C34—C33	-179.9 (4)
N1—C1—N2—C5	161.5 (3)	C47—B2—C35—C40	97.6 (4)
C2-C1-N2-C5	-18.3 (4)	C41—B2—C35—C40	-21.4 (4)
N4—C2—N3—C8	160.9 (3)	C53—B2—C35—C40	-141.7 (3)
C1—C2—N3—C8	-18.3 (5)	C47—B2—C35—C36	-80.4 (4)
N4—C2—N3—C7	-22.6 (5)	C41—B2—C35—C36	160.5 (3)
C1—C2—N3—C7	158.1 (3)	C53—B2—C35—C36	40.2 (4)
N3-C2-N4-C10	-26.6 (5)	C40—C35—C36—C37	0.5 (5)
C1-C2-N4-C10	152.7 (3)	B2—C35—C36—C37	178.7 (3)
N3—C2—N4—C9	161.1 (3)	C35—C36—C37—C38	0.6 (5)
C1-C2-N4-C9	-19.7 (5)	C36—C37—C38—C39	-1.0 (6)
C23—B1—C11—C16	88.2 (4)	C37—C38—C39—C40	0.1 (6)
C17—B1—C11—C16	-31.6 (4)	C38—C39—C40—C35	1.2 (6)
C29—B1—C11—C16	-151.7 (3)	C36—C35—C40—C39	-1.4 (5)
C23—B1—C11—C12	-89.3 (4)	B2—C35—C40—C39	-179.6 (3)
C17—B1—C11—C12	150.9 (3)	C47—B2—C41—C46	12.9 (5)
C29—B1—C11—C12	30.8 (4)	C35—B2—C41—C46	132.3 (3)
C16—C11—C12—C13	-0.3 (5)	C53—B2—C41—C46	-107.8 (4)
B1-C11-C12-C13	177.3 (3)	C47—B2—C41—C42	-166.0 (3)
C11—C12—C13—C14	0.9 (6)	C35—B2—C41—C42	-46.6 (4)
C12—C13—C14—C15	-1.0 (6)	C53—B2—C41—C42	73.4 (4)
C13—C14—C15—C16	0.6 (6)	C46—C41—C42—C43	2.5 (5)
C14—C15—C16—C11	-0.1 (6)	B2—C41—C42—C43	-178.6 (3)
C12—C11—C16—C15	-0.1 (5)	C41—C42—C43—C44	-1.8 (6)
B1-C11-C16-C15	-177.8 (3)	C42—C43—C44—C45	-1.1 (6)
C23—B1—C17—C22	8.0 (5)	C43—C44—C45—C46	3.1 (6)
C11—B1—C17—C22	128.6 (3)	C44—C45—C46—C41	-2.4 (6)
C29—B1—C17—C22	-111.2 (3)	C42—C41—C46—C45	-0.4 (5)
C23—B1—C17—C18	-171.7 (3)	B2-C41-C46-C45	-179.4 (3)
C11—B1—C17—C18	-51.0 (4)	C41—B2—C47—C52	85.1 (4)
C29—B1—C17—C18	69.1 (4)	C35—B2—C47—C52	-34.9 (4)
C22—C17—C18—C19	0.0 (5)	C53—B2—C47—C52	-154.7 (3)
B1-C17-C18-C19	179.7 (3)	C41—B2—C47—C48	-88.5 (4)
C17—C18—C19—C20	-0.7 (6)	C35—B2—C47—C48	151.5 (3)
C18—C19—C20—C21	1.2 (6)	C53—B2—C47—C48	31.7 (4)

C19—C20—C21—C22	-1.0 (5)	C52—C47—C48—C49	-0.7 (5)
C20-C21-C22-C17	0.2 (5)	B2—C47—C48—C49	173.4 (3)
C18—C17—C22—C21	0.3 (5)	C47—C48—C49—C50	0.4 (5)
B1-C17-C22-C21	-179.4 (3)	C48—C49—C50—C51	-0.3 (5)
C17—B1—C23—C28	-85.8 (4)	C49—C50—C51—C52	0.5 (5)
C11—B1—C23—C28	154.3 (3)	C50—C51—C52—C47	-0.8 (5)
C29—B1—C23—C28	33.7 (4)	C48—C47—C52—C51	0.8 (5)
C17—B1—C23—C24	89.3 (4)	B2—C47—C52—C51	-173.3 (3)
C11—B1—C23—C24	-30.6 (4)	C47—B2—C53—C54	-138.2 (3)
C29—B1—C23—C24	-151.2 (3)	C41—B2—C53—C54	-18.6 (4)
C28—C23—C24—C25	-0.5 (5)	C35—B2—C53—C54	102.0 (3)
B1—C23—C24—C25	-175.9 (3)	C47—B2—C53—C58	43.9 (4)
C23—C24—C25—C26	0.2 (5)	C41—B2—C53—C58	163.5 (3)
C24—C25—C26—C27	-0.2 (5)	C35—B2—C53—C58	-75.9 (4)
C25—C26—C27—C28	0.5 (5)	C58—C53—C54—C55	1.3 (5)
C26—C27—C28—C23	-0.8 (5)	B2—C53—C54—C55	-176.8 (3)
C24—C23—C28—C27	0.8 (5)	C53—C54—C55—C56	0.1 (6)
B1-C23-C28-C27	176.3 (3)	C54—C55—C56—C57	-0.8 (5)
C23—B1—C29—C34	-135.5 (3)	C55—C56—C57—C58	0.0 (5)
C17—B1—C29—C34	-16.3 (5)	C56—C57—C58—C53	1.5 (5)
C11—B1—C29—C34	103.6 (4)	C54—C53—C58—C57	-2.1 (5)
C23—B1—C29—C30	44.8 (4)	B2—C53—C58—C57	176.0 (3)